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Abstrad-We extend the plane stress theory of Michell (1900. Proc. Lond. Math. Suc. 31. 100
124) for a moderately thick homogeneous elastic plate. and that of Kaprielian et al. (1988. Phil
Trans. R. Soc. Lond. A324. 565-594) for a laminated plate. to include stretching and bending
solutions for an inhomogeneous thermoelastic plate. The inhomogeneities. both in the elastic
properties and thermal expansion coefficients. can vary arbitrarily through the thickness of the
plate. though for simplicity the analysis is restricted to plates with geometric and material properties
symmetric with respect to the mid-plane. The deformation is produced by a temperature field which
can also vary arbitrarily through the thickness.

The solutions are expressed in terms of the solution of the approximate. two-dimensional. thin
plate equations governing an "equivalent" homogeneous plate. and are exact solutions of the full
equations of three-dimensional thermoelasticity. By considering laminated plates to be a special
case ofinhomogcncous plates. wc derive an "cxact" laminate theory for plates consisting ofdiffcrent.
homogeneous and isotropic layers which arc perfcctly bonded to each neighbouring layer.

I. INTRODUCTION

In a recent paper, Kaprielian et al. (1988) established a theory which gives exact solutions
of the three-dimensional elasticity equations for a large class of problems involving the
stretching and bending of laminated elastic plates under the action of edge forces and
couples. The theory is based on a generalization of Michell's exact plane stress theory
(Michell, 1900) for a homogeneous isotropic clastic plate, and enables all the interface
traction and displacement continuity conditions to be satisfied, as well as satisfying the zero
traction condition on the lateral surfaces. A feature of the theory is that the solutions are
expressed in terms of solutions of the approximate two-dimensional thin-plate theory
(Timoshenko and Woinowsky-Krieger, 1959) for an "equivalent" plate of the same overall
geometry: once these "equivalent" solutions are obtained then the corresponding exact
three-dimensional solution may be derived by simple substitution. Furthermore. although
the three-dimensional solution is expressed in analytical form it is not necessary that the
thin-plate solution also be obtained analytically. Thus existing numerical codes for solving
the thin-plate equations can be extended to give three-dimensional solutions, to within an
accuracy determined by that of the numerical procedure (and not by the accuracy or
otherwise of the approximate thin-plate theory).

In a subsequent development we have generalized Michell's solution not only to
laminates but also to plates with arbitrary inhomogeneity through the thickness. In two
companion papers in a volume dedicated to I. N. Sneddon. we have presented the stretching
(Spencer. 1989) and bending (Rogers, 1989) solutions equivalent to those presented in
Kaprielian et 01. (1988) for laminated plates. together with the solution (Rogers. 1989) for
bending under the action of a uniform pressure applied to one of the faces. Again the
method was to formulate the solution in terms of the solution of the equivalent thin-plate
equations. and again it was found that the corresponding exact solution of the full equations
of three-dimensional elasticity is obtained by simple substitutions. The analyses also con
firmed the theory in Kaprielian et 01. (1988) as the important special case of "piecewise
constant" inhomogeneity. For convenience. the inhomogeneous plates were assumed to be
symmetric in the sense that the mid-plane is a plane of reflectional symmetry for the plate
geometry: the general case is the subject of a future paper.
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In this paper we demonstrate these methods, and make a modest extension to the
theory. by including the effects of specified temperature fields being imposed on such plates.
The inhomogeneity now applies to the thermal properties as well as to the elastic moduli.
For convenience we again restrict attention to symmetric plates, and we consider only
temperature fields that are spatially dependent on the through-thickness coordinate. As in
the previous papers, this leads to the uncoupling of the stretching and bending deformation
modes.

The analysis is confined to inhomogeneous isotropic plates. Whilst the effect of thermal
stresses in any laminate has an obvious practical importance, the application of greatest
current interest is probably to fibre-reinforced laminates in which each layer is not isotropic
but transversely isotropic or orthotropic (Christensen, 1979). Nonetheless, we believe a
three-dimensional theory of isotropic plates is important for at least three reasons. as
described in Kaprielian et al. (1988): a new class of exact solutions in three-dimensional
elasticity has an intrinsic merit in itself, the analysis can give a strong indication of the
manner in which we should proceed with the analysis of anisotropic laminae (Kaprielian.
1985), and the solutions. being exact, can be used as precise tests of numerical procedures
(or software packages) for the stress analysis of actual laminates.

In the following section (Section 2), we present the full governing equations and
specified boundary conditions for the problem. The only approximation allowed is that the
edge boundary conditions are satisfied only in an average sense. rather than point by point.
Thus the solution is vaiid everywhere except in edge boundary layers whose width is of
the order of the pl'lte thickness providedt the three-dimensional edge data are properly
incorporated in the boundary conditions of the plate theory using the techniques ofGregory
and Wan (1984. 1985).

As in Kapriclian cf al. (1988). Spencer (1989) and Rogers (1989). we seek to express
the solution in terms of that given by the simpler equations of thin-plate theory. and these
arc briefly reviewed in Section 3. A symmetric temperature field will produce a stretching
deformation, whilst an anti-symmetric field produces bending. Since any temperature field
can be expressed as the sum ofa symmetric and an anti-symmetric field. the general solution
decomposes into two independent solutions which we treat separately in Sections 4 and 5.
Finally. in Section 6, we show the implications of these solutions for the special case of
laminated plates. Like the theory described in Kaprielian ef al. (1988). the present theory
reduces to solving simple recurrence relations for constants describing the solution in each
individual layer. Unlike that paper. we formulate the relations so that these constants are
directly related to the more important illterlaminar values of the displacement and stress
components.

2. INUOMOGENEOUS THERMOELASTIC PLATES

We consider a plate of uniform thickness 21z, whose mid-plane coincides with the plane
== 0 of a n:ctangular Cartesian system of axes with coordinates x,y, =. All vector and tensor
components are referred to this system. The components of displacement are denoted by
u, t', IV and the components of the symmetric stress tensor fI by

(" a.t .y ")fI - fly.• flyy fly: • (I)

":.' (1:.f a::

The material is isotropic and linearly thermoelastic. with its elastic and thermal properties
dependent on =. but independent of x and y. Hence the constitutive equations can be
expressed as

t The authors are indebted to a referee for drawing this provision to their attention.
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and

(2)

(

fTyj (V.z +W,,)
fT::x = J.l w... +u.z '
fTx U,,+V...

(3)

where commas denote partial differentiation with respect to the suffix variables, and the
Lame elastic moduli A, J.l and the stress-temperature coefficient of linear thermal expansion
Pare functions of z. The temperature field T is taken to be independent of x and y, and
quasi-static conditions are assumed so that the time t takes on the role of a parameter and
is accordingly omitted from the analysis. Furthermore, for convenience we express T as the
sum of its symmetric and anti-symmetric parts, with

T(z) = T.(z) + To(z),

where

T.(z) = HT(z)+T(-z)}, To(z) = HT(z)-T(-z)},

with T. an even function of z and To an odd function:

Since the plate is symmetric. A, J.l and Pare all even functions of z :

A(Z) = A( - z), p(z) = Jt( - z). (J(z) = p( - z).

We also introduce for later usc in the analysis the quantities

" = AI(A+ 2J.l). Y= PI(A+ 2J.l)

and

The equations of equilibrium, assuming body forces to be zero, are

tTu + fTxy,y + tTx'': = 0,

tTyx + tTyy,y + tTy••• = 0,

tT.x + fT.y,y + fT••.: = O.

The boundary condition of zero traction on the lateral surfaces z = ±h requires

fTx• = fTy• = fT•• = 0 on z = ±h.

The through-thickness averages of u and v are defined by

I f~{ti(x.y).v(x,y)} = 2h _~ {u(x.y,z),v(x,y,z)} dz,

and the transverse displacement of the middle surface is denoted by

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(II)

(12)
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w(x.y) = w(x.y.O).

Stress resultants are defined by

(13)

(14)

and the bending moments by

(15)

In terms of these quantities. the plate equilibrium equations take the integrated forms
(Timoshenko and Woinowsky-Krieger. 1959):

and

Mx.•.:u+2Mxy..•y+MYN'Y = 0.

(16)

(17)

where we have incorporated the boundary condition (II).
The formulation of the problem is completed by specifying appropriate conditions

(Timoshenko and Woinowsky-Krieger. 1959) on the edge of the plate. Typical boundary
conditions are that at the edge of a plate with outward unit normal n = (nx • ny • 0) we may
specify one from each of the following pairs:

(18)

where the suffices nand s denote components in the normal and tangential directions at the
given point on the edge. so that. for example.

u" =nxu+nyu. a/os E -nya/ox+nx%y.

M", = (Myy-Mxx)nxny +Mxy(n;-n;). (19)

The first three pairs of (18) correspond to the specification of the mean edge displacement
or the edge tractions. the fourth to specification of either the slope of the mid-surface or
the bending moment applied to the edge of the plate.

3. CLASSICAL THIN-PLATE THEORY

In classical thin-plate theory it is assumed that plane sections that are initially normal
to the middle surface remain plane and normal to the middle surface. Accordingly the in
plane displacement is approximated as

u(x.y. z) :::: u(x.y) -z~·(x,y) .

t'(x.y.z):::: u(x.y)-zw(x.y).....

It is also assumed that plane stress conditions apply so that in particular

u:: = o.

Hence. from (2) and (8).

(20)

(21)
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W,z = -"(u.. +t',,,,)+yT.

1471

(22)

Substituting (20) and (22) into the constitutive equations then gives, in an obvious notation,

(
tTJa ) _ (iiJa ) _ (I 1-2J,t) (U,x-ZW,.u)_T*(I)
tTyy - iiyy - 1-2J,t I V""-ZW",,y 1 '

where

T* = P*T = 2J,tyT.

Hence we obtain

N"" ~ N"" = 2h{[u.. +([-21i)v",,-t:},

Nyy ~ Nyy = 2h{([-21i)u,x +[v",,- t:},

N:.y ~ Nxy = 2hJi.(u",,+v,x),

where

(23)

(24)

(25)

(26)

Thus. i. Ii and t: represent average values of I. Jt and r: through the plate thickness; since
r: is an odd function of z, then t: is zero. Here l' and Ii are constants defined by the plate
properties alone, whereas t: is a constant which is also dependent on the particular
temperature field that is applied. For a homogeneous plate 1= I, Ji. = J,t and t: = 2Jr'1t•.

Substitution of (25) into (16) gives the same thin-plate equations as for isothermal
elasticity (Timoshenko and Woinowsky-Krieger. 1959):

(27)

where. as in Kaprielian et al. (1988) and Spencer (1989). it is found convenient to introduce

(28)

It follows immediately from (27) that

(29)

where V2 is the two-dimensional Laplacian operator

Similarly, substitution of (23) into (15) yields

M"" ~ M"" = -ih3{Tw,xx+(T-2J1)w""y-f:},

M yy ~ Myy = -ih3{(T-2J1)w,xx+1w""y- f:},

M xy ~ Mxy = -!h3j1w,xy.

where 1, j1 and f: are weighted averages defined by

(30)

(31)
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- 3fh - 3fh
(/.j1) = 2hJ- -h {/(z).Jl(Z)}=2 dz, T: = 2hJ -h To*(z)z dz. (32)

Again rand j1 are constants dependent on the properties of the plate only, and t: is a
constant which depends also on T; t: is zero because T: is an even function of z. For a
homogeneous plate. r = I. j1 = Jl and t: = 2W/to'

Using (31) in (17) shows that the moment equilibrium equation now reduces to the
biharmonic equation

(33)

again the same thin-plate equation as for isothermal elasticity.
Hence in the thin-plate approximation. the temperature field occurs only in the bound

ary conditions. through (25) and (31). The governing two-dimensional field equations (27)
and (33) are all as for the isothermal theory.

4. SYMMETRIC TEMPERATURE FIELD; STRETCHING MODE

When a symmetric temperature field T.(z) is imposed. its effect is obviously to induce
a stretching deformation (Love. 1927) in which the in-plane displacements u. v are even
functions of z whilst the transverse displacement w is an odd function of z. It is also
reasonable to expect th.1t the solution will reduce to that obtained by Spencer (1989) when
the temperature field is zero. Moreover. the absence of constraint in the z-direction implies
that expansion must take place in that direction. Accordingly we look for a solution of a
form which is very similar to that obtained by Spencer. which was itself motivated by the
"stretching" solutions of Michell (1900) for a homogeneous plate and by Kapriclian el al.
(1988) for a laminate.

We propose a solution of the form

u = u(x,y) +F(z)il,,,

v = v(x, y) +F(z)il,Y'

W = G(z)il +K(z), (34)

where F is an even function of z and G and K are odd functions of z that need to be
determined. In (34). Ii, vand il arc functions of x and ywhich satisfy the equations

with

and hence. from (35).

iil..• - {In,y = 0, iil,y +{In.x = 0, (35)

(36)

(37)

From (27)-(29) we can therefore identify Uand vas the corresponding thin-plate solution
for an equivalent homogeneous plate with elastic constants f. and {l.

The stress corresponding to (34) is

(1u = 2JLu_.+;.(1 +G')il+2JlF6...... +;.K' -PT•.
(1... \. = 2Jl(•. + ;.( I + G ')6 + 2JlFil.Y.I' + ;.K' - PT•.
(1.•y = Jl(li.). +v.... ).+2JlFil....Y' (38)
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and

tTJC = IJ(F' +G)A.....

tTy. = IJ(F' +G)A.,.

tT:: = {A,+(A,+21J)G'}A+().+21J)K' -PT••

where use has been made of (37). and primes denote differentiation with respect to z.
From (39) •.2 we see that

so that the equilibrium equation (I Oh immediately gives. with (II).

tT•• = 0

throughout. Thus (39)] requires G and K to be such that

and

Hence

G = - r: ,,(s) ds, K = r: y(s)T.(s) ds.Jo Jo

1473

(39)

(40)

(41)

(42)

(43)

The remaining equilibrium equations (10)1.2. together with (38) and (39). require that

(44)

Furthermore. the properties of F and G require that F'+G be an odd function of z, so that
its value at z =0 is zero. Hence (44) can be integrated to give

where

Lo(z) = f /(s) ds, M 0(:) = f: lJ(s) ds.

It follows from (39),.2 that

and hence the shear traction t on the planes z =constant is

(45)

(46)

(47)



1474 T. G. ROOERS and A. J. M. SPENCER

(48)

It is straightforward to confirm that T is zero on == h, thus satisfying condition (II). A
simple integration of (45) then yields

F(z) = fa' [-G(s) + P;S) {(i/Ji)Mo(s)-Lo(s)} ] ds+ko,

where we have used (43). and k o is a constant.
The remaining stress components are now determined by

Ux:c = lu•• +(/-2p)v.y+2pF~ ..tx-2pyT.,

Uyy = (/-2p)u•• +lv.y+2pF~.yy-2pyT.,

uxy = p(li•• +L;.y)+2JlF~.<y,

(49)

(50)

with F(z) as given in (49).
The solution is completed when the disposable constant ko is determined. To assign this

constant we may impose one further condition. If we wish the mean in-plane displacement
components Ii and v to coincide with the mean displacements Ii and v for the equivalent
plate, then ko must be such that

f F(=) dz = O. (5 I)

If alternatively it is required that the stress resultants N.•.• , N,.y and N•• coincide with those
associated with the thin-plate solution for the equivalent plate, then integration of (50) and
comparison with (25) show that then ko must be such that

rp(z)F(z) dz = O. (52)

It seems natural to choose (51) if in-plane displacements are prescribed on the edge of the
plate, and to choose (52) if traction boundary conditions are prescribed there.

In many respects the solution is remarkably simple, and very similar to that obtained
by Spencer (1989). Apart from its effect on the edge conditions applying to the approximate
thin-plate equations, the temperature field introduces one additional term in the dis
placement field, namely the function K(=) in the transverse displacement w, and the term
- p. T. in the in-plane stress components uxx and uyyo Otherwise the solution is the same as
that obtained for the isothermal case.

S. ANTI·SYMMETRIC TEMPERATURE FIELD; BENDING MODE

Just as the symmetric part T. of the temperature field produces stretching but no
bending of the middle surface, so the anti-symmetric part To produces bending but no
stretching. We are again motivated by previous bending solutions (Michell, 1900; Kapri
elian el al., 1988) and their generalization to inhomogeneous plates by Rogers (1989),
together with the experience of the previous section, Section 4. Accordingly we now look
for solutions of the form

u = {A(z)l~·+B(z)V2W}.<,

V = {A(=)'V+B(=)Vl,iL,

w = w+C(z)V2w+D(z). (53)
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This is the same form as that of Rogers (1989) with the sole exception of the additional
term 0(=) in the transverse displacement w. The function w(x.y) is chosen to be the
transverse displacement of the equivalent homogeneous plate with elastic constants .r and
ii and so satisfies the two-dimensional biharmonic equation

(54)

The functions A. B. C and 0 must be determined such that equilibrium is maintained and
the boundary conditions (11) and edge conditions are satisfied.

The stress corresponding to (53) is

and

a.... = A.(A +C')V2w+Zp(Aw+BV2w).u+A.O' -fJTo•

ay! = A(A +C')V2w+Zp(A»:·+BV2 w)....v+A.O' -fJTo •

a ty = 2p(A."+BV2\i''l.x.v.

at: = It{(A' + I).'-+(B' +C)V2»:'L••
(1 •.: = It{(A' + I).'·+(B' +C)V2.q ....
(1:: = p.A + (A, + Zlt)C'} V2w+ (A,+ Zll)O' - fJTo•

(55)

(56)

where usc has been made of (54).
Once again. as in Section 4. we start with equilibrium equation (\0»); substitution from

(56) yields the relation

UI(A' + I) + {i.A + (A. + 2/1)C' }'}V2\i"+ {O.+ Zp)D' - fJT,,}' = O. (57)

Hence. A. C and D must satisfy

p(A' + 1)+ {A,A + (A,+zp)CT = 0

and

Similarly the remaining equilibrium. equations imply that A. Band C must satisfy

{p(A' + I)}' = 0

and

2pA +A.(A+C')+ {p(B'+C)}' = o.

Zero traction on the lateral surfaces requires the conditions that

(58)

(59)

(60)

(61)

A' + I =O. B' +C = O. lA + (A, + 2,t)C' =0, (A,+21l)D' -PTo =0

on z = ±h. (62)

Hence (58)-(60). show that. throughout the plate,

,4'+1=0. A,A+(A.+ZIl)C'=O (63)
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(A.+2/l)D' -PTo =O. (64)

Finally. symmetry about z = 0 implies that both A(=) and B(=) are zero on the middle
surface.

The equations and conditions governing A. Band C are exactly the sam", as in the
solution derived by Rogers (1989), giving

A = -z~

B = -1' s/(s)Ro(s) ds- {L.(h)-L.(z)}Ro(z)+N2(=)-Cz,

C = N1(=)+k t • (65)

Here k l is a constant, and Ro, Lit N I and N2 are integrals involving only the elastic
properties:

(66)

(67)

with the suf1ices O. 1.2 denoting the power of s in the integrand. Also (56). (63) and (64)
show that. as in Rogers (1989).

(68)

throughout, and the shear traction T on surfaces z =constant is given by

(69)

The only new feature is the term D(=) given by (64) as

where y is defined in (8) and k 2 is another disposable constant.
The remaining stress components can now be written as

'/. (/"). I ., BV2 • p. T(fu = - =\ \\l.u + - -Jt W •.l'V J + -Jt W.,U - ".

(f" = -z{(/- 2Jl)w,.:rx +/W.,..} +2/lBV2lV.)"V - p. To.

(fx, = 2Jl( -zw+BV2 w),.:ry,

(70)

(71)

where B is given in (65).
The two disposable constants k l and k 2, like ko in Section 4, may be assigned any

convenient values. If edge deflections are specified then a suitable choice would be to make
w = ~. at z = 0 so that the middle surface deflection coincides with that of the equivalent
plate. Then C(O) = D(O) = 0, with

(72)
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Alternatively. if edge bending moments are specified then a more suitable choice would be
to make the bending moments coincide with those in the equivalent plate. In this case. (15).
(71) and (31) show that the relevant condition is

fZIl(z)B(z) dz = O. (73)

This yields a value for kJ, but leaves k 2 arbitrary. being equivalent only to a rigid translation
in the z-direction.

Once again we note the straightforward derivation of the solution. and its similarity
to that obtained by Rogers (1989) for isothermal problems. Again. apart from its effect on
the edge conditions imposed on the thin-plate equations. the temperature field introduces
one additional term D(z) in the transverse displacement wand the term - p. To in (1n and
(1". Indeed. we observe that when the two solutions of Section 4 and the above are
superposed. the overall effect is to superpose the "thermal displacement" vector

( r: P(s) )
o. o. Jo A.(s) +2Jt(s) T(s) ds (74)

onto the displacement field derived by Spencer (1989) and Rogers (1989). together with an
additional term - p. T onto the stress components (1.u and (1,,.

6. LAMINATED PLATES

A very important spl.'Cial case of an inhomogeneous plate is that of a laminate.
consisting of a number of uniform layers of possibly different thicknesses and of different
homogeneous clastic nUlteri.lls. This was the C.lse considered by Kapriclian (,t a/. (1988) for
plane stress stretching and bending••tnd also considered as a special case by both Spencer
(1989) and Rogers (1989).

The laminate theories in these three papers arc equivalent but were derived by different
methods. The theory in the first is based on a generalization of Michell's solution for a
single layer. such that each layer solution contains a number of disposable constants and
does not require the shear tractions on the lateral surface to vanish. It was found that these
arbitrary constants were sufficient to satisfy all the interface traction and displacement
continuity conditions as well as the vanishing traction conditions (II) on the lateral surfaces.
The continuity conditions naturally led to a system of recurrence relations for the arbitrary
constants. which could be solved in a straightforward manner to produce the required exact
solution. In the other two papers it was shown how these relations could be recovered from
the inhomogeneous plate theory.

In this section we show an equivalent but different formulation in which the solution
is expressed in terms of constants associated with each interlaminar boundary rather
than with each layer. These constants are also determind by recurrence formulae in a
straightforward manner. and can be interpreted directly in terms of interlaminar displace
ment. shear tractions. etc.

In Kapriclian et a/. (1988). the middle surface ofeach layer therefore had a significance
which no longer applies in the prescnt inhomogeneous context; the significant positions in a
laminate are the interfaces at which adjacent layers are perfectly bonded. Accordingly some
of our notation differs from that of these previous three papers.

We consider a symmetric laminated plate (refer to Fig. I) comprised of2N+ I homo
geneous laminae. with the ith laminae above and below the mid-plane z = 0 being identical
in material and thicknesses. As before. any quantity related to the ith layer is identified by
the index i. and the layers are consecutively numbered from i = O. the layer containing the
mid-plane. to i = N. the layers adjacent to the lateral surfaces. The ith layers have uniform
thickness 2h j and Lame elastic constants A.I • III and stress-temperature coefficient Pi. with
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._------------..,. I.h

i-N

2-',

------- i-O --------

Fig. 1. Laminate geometry.

za H e+ 1

,-H,

,·0

associated constants Ilf 'I;, ).~, (; and Pi·' The overall thickness is 2h with

N

h =ho+2 L h;.
;-1

(75)

We also denote by Hi the distance from the mid-plane of the plate z = 0 to the interface
z = H; between the (i - I )th and ith layers, unlike the previous three papers where H;
denotes the distance from == 0 to the middle surface of the ith layer. Hence the ith layer
is defined by

H; ~ == z/ ~ H,+ I (i = I, 2, ... , N)

where z/ denotes the =variable in the ith layer, and we have

; .
fl. = hu• llN t- I = h. H; = hu +2 L h, (i = 1.2•...• N)

,- I

with. for example. from (46).

/- I

MO(Zi) =Poho+2 L p,h,+p,(zj-Hj). i> I.
,-1

(76)

(77)

(78)

An important additional notation is to introduce the interlaminar constants M~I}. L~l, L\1}.
N\') and N~l, where M~) = Mo(H,). L~) = Lo(H;), L\') = L1(H,), NY) = N1(H;) and
N~) = N 2(H/). Hence. from (46).

;- I /- I

M~I} = Poho+ 2 L p,h" L~) = loho+ 2 L I,h,.
,.. I r_ I

Then. for i > O.

with

In a similar fashion and notation we obtain. from (66) and (67),

(79)

(80)

(81)

L1(zo) = ~/oz~.

N1(zo) = !'1oZ~,

N 2(zo) = i'loz~.

LI(z/) = L\,)+V;(z;-H;).

N I (z;) = N\I} +1'1/(::; - H;).

N 2(=/) = N~) + i'l'(Z/- Hl), (82)
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(83)

(84)

(85)

Then in particular we have

(86)

The integrals involving the temperature field cannot be expressed in such a simple
fashion, and involve quadratures of the temperature functions T. and To. From (43) and
(70),

(87)

(88)

where K(I) = K(Il,), DIll = D(f/l) and, without loss of generality. we choose k 2=O.
The complete solutions for both stretching and bending can be formulated in terms of

the interlaminar constants. Thus. in the stretching mode, K(=,) is given in (87) .md

where G(I) = G(f1,). Therefore

(90)

The function F(=) given in (49) is much more complicated. However, it is easy to show that

(91)

so that. denoting fill = F(HI ),

(92)

and for i = 1,2, ...• N we obtain

(93)

where

(94)
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(95)

The method for determining the "stretching" constants is then a straightforward recurrence
procedure. We first determine iand {l to give~, and then use (81), (87), (90), (92), (94) and
(95) recursively to give M~), L~), K(i), G(i), S(i) and £Ii) for i =0, I, ... , N.

The value ofko can be taken as zero for this computation; this effectively means that
one first computes not £Ii) but flil, where

(96)

One can then use these values for flil in the relevant condition. such as (51) or (52), to give
ko. Thus, for (5 I). we write

0= 1" {F(z)+ko} d:

so that

I rh

ko= - ilju F(:) dz

= -J![lhof<0)+2
Nf {hif<I)+hlSdJlI+1h?<2~-"i)}]'

I 1-0

If condition (52) is to be used. then ko is given by

I lhku = - h'-': JI(::)F(::) dz
JI u

(97)

The solution for bending may be treated similarly. The temperature term D(z;) is given
in (88). Denoting eli) = C(H;) we have, from (65) and (82),

(99)

so that

(100)

The more complicated function 8(:) takes the form, from (65),

(101)

in the central layer, and in the ith layer (i > 0) we have

where B(I) = B(H;). Hence

(103)
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The procedure for determining the "bending" constants is as straightforward as for the
stretching case. We first determine Ds'''+ I) -LV) successively for i decreasing from N to I
using the relation [from (83)]

(105)

From (69) we see that these values effectively give the interlaminar shear tractions fHl. We
then use (88), (100), (103) and (104) recursively to give Dlil, eli) and Blil for i =O. I•...• N.

The value for k l can be treated in the same way as for k o. We first carry out the above
computations with k I = O. If (72) is the appropriate condition then obviously this completes
the solution; otherwise we have effectively computed not eli) and B<iI but eli) and Bli) with

and

(106)

These values c.tn then be used in condition (72), say. to give k l • since then

0= rh

zI1(z)fB(z)-k,z} dz
Ju

so that

31h

-k l = ~/l zp(z)B(z) dz
p I II

_I [I L ( +") _1 + LINt- II (C'IUI 1 I 2) 1_3
- ':.,''', \ 10 tin - JIo- u I - - '/'0" 0 J'Uj'-1lpi -

+6£ hl{JI,(BIO - eli) - D,Nt-1) + LV) + !h,J.t,('l, +2)(2f1; +h;)}J.
I-I

(t07)

When the interlaminar constants have been determined, then straightforward sub
stitution into expressions (93), (89) and (87) for F. G and K, and then into the relevant
formulae in Section 4, gives exact three-dimensional solutions for thermal stretching of the
laminated plate. Exact solutions for thermal bending are obtained by using (to I). (102).
(100) and (88) for B, e and D and then substituting into the relevant formulae in Section
S. In both cases. the solutions are given for any plate problem. under edge loading, provided
the relevant solution to the thin-plate equations for the equivalent plate is known.

In these solutions. it is seen from (40) and (68) that the transverse normal stress
component (1:: is identically zero throughout the plate, whether it is a laminate or more
generally inhomogeneous. In general. the shear traction f vanishes only at the external
surfaces; its interlaminar values are given by (48). (69), (79) and (83).
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